[bookmark: _GoBack][image:]

Academic Affairs Assessment of Student Learning
Report for Academic Year 2023-2024

Department/Program: Master of Science in Computer Science
Assessment Coordinator’s Name: Michael R. Anderson
Assessment Coordinator’s Email Address: andersmr@wvstateu.edu

1. Which learning outcomes did you measure this past year? The MSCS program measured PLOs 3, 4, and 5.

2. In which course(s) were assessments conducted?
PLOs 3, 4, and 5 were measured in CS 510. PLOs 4 and 5 were measured in CS 540.

How did you assess the selected program learning outcomes? For PLOs 3, 4, 5, measurement is done by correlating performance on class projects with PLO levels.

3. How many students were included in the assessment(s) of each PLO in a course?
For measurements in CS 510, thirteen students were included. For measurements in CS 540, eight students were included.

4. How were students selected to participate in the assessment of each outcome?
All students enrolled in the class were included.

5. In general, describe how each assessment tool (measure) was constructed (i.e. in-house, national, adapted).

The projects were created by the course instructor.

6. Who analyzed results and how were they analyzed
The results were discussed by the department assessment coordinator and the department graduate coordinator, who was also the course instructor-of-record.

7. Provide a summary of the results/conclusions from the assessment of each measured Program Learning Outcome.

Data:
CS 510:
	PLO results by student
	
	
	
	
	
	

	Term
	
	 PLO 3
	 PLO 4
	 PLO 5
	
	Raw Score
	Conversion:

	Spring 2024
	3
	3
	3
	
	26
	Score
	PLO Score

	Spring 2024
	3
	3
	3
	
	27
	0-11
	1

	Spring 2024
	3
	3
	3
	
	23
	12-20
	2

	Spring 2024
	3
	3
	3
	
	29
	21-30
	3

	Spring 2024
	2
	2
	2
	
	19
	
	

	Spring 2024
	3
	3
	3
	
	26
	
	

	Spring 2024
	2
	2
	2
	
	20
	
	

	Spring 2024
	2
	2
	2
	
	18
	
	

	Spring 2024
	2
	2
	2
	
	17
	
	

	Spring 2024
	2
	2
	2
	
	16
	
	

	Spring 2024
	2
	2
	2
	
	17
	
	

	Spring 2024
	1
	1
	1
	
	10
	
	

	Spring 2024
	2
	2
	2
	
	12
	
	

	
	
	
	
	
	
	
	
	

	Average:
	
	2.3
	2.3
	2.3
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	Distribution by student of PLO results
	
	
	
	
	

	
	Introducing
	Developed
	Mastered
	
	
	

	PLO 3
	1
	
	7
	
	5
	
	
	

	PLO 4
	1
	
	7
	
	5
	
	
	

	PLO 5
	1
	
	7
	
	5
	
	
	

CS 540:
	PLO results by student
	
	
	
	
	

	Term
	
	 PLO 4
	 PLO 5
	
	Raw Score
	Conversion:

	Spring 2024
	3
	3
	
	20
	Score
	PLO Score

	Spring 2024
	3
	3
	
	20
	0-7
	1

	Spring 2024
	3
	3
	
	20
	8-14
	2

	Spring 2024
	3
	3
	
	16
	15-20
	3

	Spring 2024
	3
	3
	
	16
	
	

	Spring 2024
	3
	3
	
	15
	
	

	Spring 2024
	2
	2
	
	14
	
	

	Spring 2024
	2
	2
	
	11
	
	

	
	
	
	
	
	
	
	

	Average:
	
	2.8
	2.8
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Distribution by student of PLO results
	
	
	
	

	
	Introducing
	Developed
	Mastered
	
	

	PLO 4
	0
	
	2
	
	6
	
	

	PLO 5
	0
	
	2
	
	6
	
	

Overall, students seem to be near the expected final level for these PLOs.

8. What are next steps? (e.g., will you measure this same learning outcome again? Will you change some feature of the classroom experience and measure its impact? Will you try a new tool? Are you satisfied?)

Data collection efforts will continue, with collection happening in more of the courses shown on the curriculum map. Longer term, evaluation of class projects for assessment will be more formalized.

9. Please attach an example of the assessment tool used to measure your PLO(s). These can be added as an appendix, a link to the assessment, or sent separately in email with your report.

Simulation Exercises for Operating Systems
Simulation Exercise 1: Process Management Simulation
Goal: To simulate five process management functions: process creation, replacing the
current process image with a new process image, process state transition, process
scheduling, and context switching.
You will use Linux system calls such as fork(), wait(), pipe(), and sleep(). Read man
pages of these system calls for details.
This simulation exercise consists of three types of Linux processes: commander, process
manager, and reporter. There is one commander process (this is the process that starts
your simulation), one process manager process that is created by the commander process,
and a number of reporter processes that get created by the process manager, as needed.
Commander Process
The commander process first creates a pipe and then a process manager process. It then
repeatedly reads commands (one command per second) from the standard input and
passes them to the process manager process via the pipe. There are four types of
commands:
1. Q: End of one unit of time.
2. U: Unblock the first simulated process in blocked queue.
3. P: Print the current state of the system.
4. T: Print the average turnaround time, and terminate the system.
Command T appears exactly once, being the last command.
Simulated Process
Process management simulation manages the execution of simulated processes. Each
simulated process is comprised of a program that manipulates (sets/updates) the value of
a single integer variable. Thus the state of a simulated process at any instant is comprised
of the value of its integer variable and the value of its program counter. A simulated
process’ program consists of a sequence of instructions. There are seven types of
instructions as follows:
1. S n: Set the value of the integer variable to n, where n is an integer.
2. A n: Add n to the value of the integer variable, where n is an integer.
3. D n: Subtract n from the value of the integer variable, where n is an integer.
4. B: Block this simulated process.
5. E: Terminate this simulated process.
6. F n: Create a new simulated process. The new (simulated) process is an exact copy of
the parent (simulated) process. The new (simulated) process executes from the instruction
immediately after this (F) instruction, while the parent (simulated) process continues its
execution n instructions after the next instruction.
7. R filename: Replace the program of the simulated process with the program in the file
filename, and set program counter to the first instruction of this new program.
An example of a program for a simulated is as follows:
S 1000
A 19
A 20
D 53
A 55
F 1
R file_a
F 1
R file_b
F 1
R file_c
F 1
R file_d
F 1
R file_e
E
You may store the program of a simulated process in an array, with one array entry for
each instruction.
Process Manager Process
The process manager process simulates five process management functions: creation of
new (simulated) processes, replacing the current process image of a simulated process
with a new process image, management of process state transitions, process scheduling,
and context switching. In addition, it spawns a reporter process whenever it needs to print
out the state of the system.
The process manager creates the first simulated process (process id = 0). Program for this
process is read from a file (filename: init). This is the only simulated process created by
the process manager on its own. All other simulated processes are created in response to
the execution of the F instruction.
Process manager: Data structures
The process manager maintains six data structures: Time, Cpu, PcbTable, ReadyState,
BlockedState, and RunningState. Time is an integer variable initialized to zero. Cpu is
used to simulate the execution of a simulated process that is in running state. It should
include data members to store a pointer to the program array, current program counter
value, integer value, and time slice of that simulated process. In addition, it should store
the number of time units used so far in the current time slice.
PcbTable is an array with one entry for every simulated process that hasn't finished its
execution yet. Each entry should include data members to store process id, parent process
id, a pointer to program counter value (initially 0), integer value, priority, state, start time,
and CPU time used so far.
ReadyState stores all simulated processes (PcbTable indices) that are ready to run. This
can be implemented using a queue or priority queue data structure. BlockedState stores all
processes (PcbTable indices) that are currently blocked. This can be implemented using a
queue data structure. Finally, RunningState stores the PcbTable index of the currently
running simulated process.
Process manager: Processing input commands
After creating the first process and initializing all its data structures, the process manager
repeatedly receives and processes one command at a time from the commander process
(read via the pipe). On receiving a Q command, the process manager executes the next
instruction of the currently running simulated process, increments program counter value
(except for For R instructions), increments Time, and then performs scheduling. Note
that scheduling may involve performing context switching.
On receiving a U command, the process manager moves the first simulated process in the
blocked queue to the ready state queue array. On receiving a P command, the process
manager spawns a new reporter process. On receiving a T command, the process
manager first spawns a reporter process and then terminates after termination of the
reporter process. The process manager ensures that no more than one reporter process is
running at any moment.
Process manager: Executing simulated processes
The process manager executes the next instruction of the currently running simulated
process on receiving a Q command from the commander process. Note that this
execution is completely confined to the Cpu data structure, i.e. PcbTable is not accessed.
Instructions S, A and D update the integer value stored in Cpu. Instruction B moves the
currently running simulated process to the blocked state and moves a process from the
ready state to the running state. This will result in a context switch. Instruction E
terminates the currently running simulated process, frees up all memory (e.g. program
© Copyright 2023 Pearson Education, Inc. All Rights Reserved.
array) associated with that process and updates the PcbTable. A simulated process from
the ready state is moved to running state. This also results in a context switch.
Instruction F results in the creation of a new simulated process. A new entry is created in
the PcbTable for this new simulated process. A new (unique) process id is assigned and
the parent process id is process id of the parent simulated process. Start time is set to the
current Time value and CPU time used so far is set to 0. The program array and integer
value of the new simulated process are a copy of the program array and integer value of
the parent simulated process. The new simulated process has the same priority as the
parent simulated process. The program counter value of the new simulated process is set
to the instruction immediately after the F instruction, while the program counter value of
the of the parent simulated process is set to n instructions after the next instruction
(instruction immediately after F. The new simulated process is created in the ready state.
Finally, the R instruction results in replacing the process image of the currently running
simulated process. Its program array is overwritten by the code in file filename, program
counter value is set to 0, and integer value is undefined. Note that all these changes are
made only in the Cpu data structure. Process id, parent process id, start time, CPU time
used so far, state, and priority remain unchanged.
Process manager: Scheduling
The process manager also implements a scheduling policy. You may experiment with a
scheduling policy of multiple queues with priority classes. In this policy, the first
simulated process (created by the process manager) starts with priority 0 (highest
priority). There are a maximum of four priority classes. Time slice (quantum size) for
priority class 0 is 1 unit of time; time slice for priority class 1 is 2 units of time; time slice
for priority class 2 is 4 units of time; and time slice for priority class 3 is 8 units of time.
If a running process uses its time slice completely, it is preempted and its priority is
lowered. If a running process blocks before its allocated quantum expires, its priority is
raised.
Process manager: Context Switching
Context switching involves copying the state of the currently running simulated process
from Cpu to PcbTable (unless this process has completed its execution), and copying the
state of the newly scheduled simulated process from PcbTable to Cpu.
Reporter Process
The reporter process prints the current state of the system on the standard output and then
terminates. The output from the reporter process appears as follows:
**
The current system state is as follows:
**\\
CURRENT TIME: time

RUNNING PROCESS:
pid, ppid, priority, value, start time, CPU time used so far

BLOCKED PROCESSES:
Queue of blocked processes:
pid, ppid, priority, value, start time, CPU time used so far
…
pid, ppid, priority, value, start time, CPU time used so far

PROCESSES READY TO EXECUTE:
Queue of processes with priority 0:
pid, ppid, value, start time, CPU time used so far
pid, ppid, value, start time, CPU time used so far
…
…
Queue of processes with priority 3:
pid, ppid, value, start time, CPU time used so far
pid, ppid, value, start time, CPU time used so far
**
©

image1.jpeg
/E WEST VIRGINIA STATE
UNIVERSITY

Find (/ou Passion.

1801

